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MATHEMATICS EXTENSION 1

Friday 8th August 2014

General Instructions

e Reading time — 5 minutes

e Writing time — 2 hours

e Write using black or blue pen.

e Board-approved calculators and tem-
plates may be used.

e A list of standard integrals is provided
at the end of the examination paper.

Total — 70 Marks
e All questions may be attempted.

Section I — 10 Marks
e Questions 1-10 are of equal value.

e Record your solutions to the multiple
choice on the sheet provided.

Section IT - 60 Marks
e Questions 11-14 are of equal value.
e All necessary working should be shown.

e Start each question in a new booklet.

Checklist

e SGS booklets — 4 per boy
e Multiple choice answer sheet
e Candidature — 120 boys

Collection

e Write your candidate number on each
booklet and on your multiple choice
answer sheet.

e Hand in the booklets in a single well-
ordered pile.

e Hand in a booklet for each question
in Section II, even if it has not been
attempted.

e If you use a second booklet for a ques-
tion, place it inside the first.

e Place your multiple choice answer
sheet inside the answer booklet for
Question Eleven.

e Write your candidate number on this
question paper and submit it with
your answers.

Examiner
DS
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SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet
handed out with this examination paper.

QUESTION ONE

Which expression is equivalent to cos2x ?

(A)

sin

2(13—008233

2sin’x — 1

2sin2:1:+1

2cos’x —1

QUESTION TWO

A polynomial of degree four is divided by a polynomial of degree two.
What is the maximum possible degree of the remainder?

(A)

3

2

Exam continues next page ...
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QUESTION THREE

In the diagram above the point P divides the interval AB in the ratio 3 : 2. In what ratio

does the point A divide the interval BP 7

(A) —5:3
(B) —5:2
(C) -3:5
(D) -2:5

QUESTION FOUR

What is the exact value of cos™? (cos (—g))r’

(4) -
®) -3
© 3
D) %

QUESTION FIVE

Which function is a primitive of ———7
1+ 422
(A) %tan_l (%az)
(B) %tan_l (%az)
(C) Ltan™'(22)

(D) itan™'(22)

Exam continues overleaf ...
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QUESTION SIX

Which expression is equal to "Cs ?

(A)
(B) 5
(C) =5
D) =

QUESTION SEVEN

The velocity v of a particle moving in a straight line is governed by the equation v = z — 2,

where x is its displacement. The particle started at x = 5. What is the displacement
function of the particle?

QUESTION EIGHT

A particle is moving in simple harmonic motion about the origin according to the equation
xr = 2cosnt, where x metres is its displacement after ¢ seconds. It passes through the
origin with speed v2m/s. What is the value of n?

3 B
Lo sl

e~

Exam continues next page ...



SGS Trial 2014 .............. Form VI Mathematics Extension 1 .............. Page 5

QUESTION NINE

» <

910

34

The diagram above shows the velocity—time graph of an object that moves over a 10 second
time interval. For what percentage of the time is the speed of the object decreasing?

(A 30%
(B)  60%
() 70%

(D) It cannot be determined from the graph.

QUESTION TEN

How many solutions does the equation 2x + 37w sinz = 0 have in the domain 0 <z < 277

(A) 1
(B) 2
() 3
(D) 4

End of Section 1

Exam continues overleaf ...
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SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.

Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks

]

2
(a) Solve the inequation — < 3.
x

(b) (i) Sketch the curve y = sin™ ' .
(ii) What is the gradient of the curve at x =07

(c) Solve the equation sin2zx = sinx for —7 <z < 7.

(o] [e] [=][=]

(d) A curve is defined parametrically by the equations
r=1-—1
Y= t2.
Find the gradient of the tangent to the curve at the point where t = —3.

s

5

[e]

(e) By using the substitution u = sin z, or otherwise, evaluate / sin® x cos x dzx.

0

(f) A spherical balloon, with volume given by the formula V' = %71‘7“3, is being filled with
air at the constant rate of 200cm?®/s. At what rate is its radius r increasing at the

instant when it is 7cm? Give your answer correct to three significant figures.

Exam continues next page ...
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QUESTION TWELVE (15 marks) Use a separate writing booklet.

(a) The cubic equation z® + 522 + cx + d = 0 has three real roots —3, 7 and a.
(i) Use the sum of the roots to find «.
(ii) Find the values of ¢ and d.

9
2
(b) Find the coefficient of z* in the expansion of (33:2 — ;) .

(¢) (i) Write the expression v2sinz — v6cosz in the form Asin(z — 6), where A > 0
and 0 <0 < 7.

(ii) Hence write down the maximum value of v/2 sin 2 —+/6 cos z, and find the smallest
positive value of x for which this maximum value occurs.

(d) Let P(x) =2 + 3z — 7.
(i) Show that the equation P(z) = 0 has a root between 1 and 2.
(ii) Use two applications of Newton’s method with initial approximation z; = 1 to
approximate this root. Give your answer correct to two decimal places.
(e) Suppose that 6 is the acute angle between the lines y = kx and (k + 1)y = kx, where
k+4+1>0and k # 0.
(i) Find an expression for tanf in simplest form.

(ii) Explain why 6 < 45°.

Exam continues overleaf ...
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QUESTION THIRTEEN (15 marks) Use a separate writing booklet. Marks

(a)

(d)

The diagram above shows the points A, B and C lying on a circle, of which AC' is a
diameter. The line AP is perpendicular to the tangent at B.
Let /BAC = a.

Prove that BA bisects ZPAC.

A particle is moving in simple harmonic motion. Its acceleration is defined by the
equation & = —9z. Whenever the particle is 4 cm from the origin its speed is 6 cm/s.

Find the amplitude of the motion.

Consider the quadratic polynomial Q(x) = (z + h)? + k, for some constants h and k.
Find the values of h and k given that =+ 2 is a factor of Q(z) and 16 is the remainder
when Q(z) is divided by z.

Prove by mathematical induction that for all positive integer values of n,
1Px2+4+2°x3+3x4+--4+n”(n+1)=5nn+1)(n+2)3n+1).

Exam continues next page ...
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QUESTION THIRTEEN (Continued)

(e) A jug of cold water at W° C, where W > 0, is taken out of a refrigerator. The air
temperature in the room is 2IWW° C. The rate at which the water warms is proportional
to the difference between the temperature of the surrounding air and the temperature

dT
of the water. Thus i k(2W — T), where T° C is the temperature of the water

after ¢ minutes.

(i) Show that T = 2W — We ™™ satisfies the differential equation.

] [=]

(ii) If the temperature of the water has increased by 50% after 20 minutes, find the
value of k.

(iii) Find the percentage increase in the temperature of the water 45 minutes after
the water is taken out of the refrigerator. Give your answer correct to the nearest
whole percent.

QUESTION FOURTEEN (15 marks) Use a separate writing booklet. Marks
a
( ) 2 _ 4ay N
0
P R .
X
N A
T

In the diagram above the normal at P(2ap, ap®) on the parabola z? = 4ay meets the
parabola again at Q(2aq,aq?). You may assume that the normal at P has equation
x4 py = 2ap + ap>.

(i) Show that p® + pg+ 2 = 0.
(ii) Given that the tangents at P and @ intersect at the point T (a(p + q), apq), and
the line through T parallel to the axis of the parabola meets the parabola at
R(2ar,ar?), prove that PR is a focal chord. (That is, prove that pr = —1.)

Exam continues overleaf ...
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QUESTION FOURTEEN (Continued)
(b) (i) By considering the expansion of (1 4 z)", show that

()4 () () () - 2222

(ii) By applying integration to the identity in part (i), with the substitution u = 1+x
on the right-hand-side, show that

(1)) S () e dederd

A

.
=V

In the diagram above the point O is the foot of a plane inclined at an angle a to the
horizontal. A particle is projected with speed V' from O at an angle of elevation 6 to
the horizontal, where 6 > «. It strikes the inclined plane at P, which is the vertex
of the parabolic path of the particle. You may assume that this parabolic path has
parametric equations x = Vtcosf# and y = Vitsinf — %th.

(i) Show that tanf = 2tana.

2V?2secatan o
ii) Show that the distance OP is given b . 4
(i) 8 Y g(1+ 4tan? )

End of Section 11

END OF EXAMINATION
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The following list of standard integrals may be used:

1
/x"dx: "o £ -1, x#£0,iffn<0
n+1

1
/—da;:lnx, x>0
x

1
/e”da::—e”, a#0

a

1
/cosaxdx:—sinaa:, a#0
a

i 1
sinardr = — —cosazx, a#0
a
9 1
sec“arxdr = —tanax, a # 0
a
1
secartanardr = —secazr, a # 0
a

1 1
/7da::—tan_1£, a#0

a? + x2 a a

. 1T
T = sin 1—, a>0, —a<z<a
a

1
/\/c12—332 d

/%dazzln(az-ﬁ- 932—a2) z>a>0
2 — a2 ’
1
_ 2 2
/x2+a2dx—ln<x+ x-i—a)

NOTE: Inx =log, 2z, x >0
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